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Supervised learning

Supervised learning is a type of machine learning where the algorithm is trained on
labeled data. Supervised learning is suitable for solving problems where the goal is to
predict the output value based on the input data.

There is a clear relationship between the input data and the output labels.
Sufficient labeled data is available to train the algorithm.
The problem can be defined as a classification or regression task.

The goal is to make accurate predictions on new, unseen data.

Some examples of applications that use supervised learning include spam filtering,
image recognition, speech recognition, and predicting housing prices



Unsupervised learning

Unsupervised clustering is used to group similar data points into clusters without any
predefined labels or categories. Unsupervised clustering is suitable for solving
problems where the goal is to discover patterns and relationships in the data.

There is no clear relationship between the input data and the output labels.
There is a large amount of unlabeled data available.
The goal is to discover patterns and relationships in the data.

The data can be grouped into natural clusters based on similarity.

Some examples of applications that use unsupervised clustering include image
segmentation, clustering, dimensionality reduction.



Regression problems
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Regression

Regression is used to determine the correlation between one dependent variable Y
and a set of other variables X, X, which are considered independent variables. The
goal of regression analysis is to understand how changes in the independent variables
are associated with changes in the dependent variable, and to use this information to
make predictions about the value of the dependent variable.

Regression investigates the correlation between variables observed in a data set, and
quantifies whether those correlations are statistically significant or not.

Examples of problems that can be addressed with regression include prediction of
product price, forecasting demand for a product and prediction of disease risk.
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Regression

Regression can be linear, or non-linear and it can be distinguished in simple and
multi based on the number of the independent variables.

Simple linear regression: Y =a+b*X +u

Multiple linear regression: Y =a+b,* X, + b,* X, +b *X, +..+ u
Y: dependent

X: independent

u: error
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Linear Regression

First we need to test if variables are
correlated (remember the correlation
statistical tests). Once we identify a valid
correlation, we can use linear regression to
identify what’s the type of dependency that
can describe our dataset.
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Least squares (linear regression)

Least square method aims to minimize the
sum of squared error between the predicted
values and the actual values.
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Lasso (least absolute shrinkage and selectio
operator) is a linear regression method that
performs both variable selection and
regularization in order to enhance the
prediction accuracy and interpretability of
the model. LASSO regression adds a penalty 5560
term to the objective function of linear S
regression, which is a multiple of the sum o

the absolute values of the coefficients.
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The objective function of LASSO regression
can be expressed as:

Coefhficient Error term
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Ridge

Ridge regression adds a penalty term to the
objective function of linear regression,
which is a multiple of the sum of the
squares of the coefficients.
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Elastic-net

Elastic net adds a penalty term to the — Elastic Net
objective function of linear regression,
which is a weighted sum of the L1 (absolute
value) and L2 (squared value) norms of the
coefficients.
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Linear Regression

Any observations for linear regression methods?
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Linear Regression

Any observations for linear regression methods?

The specific methodology and the additional error term does not seem to have a
significant effect on the results (for this particular problem).

However the results depend on the characteristics of the problem, so it’s not always
trivial to judge which method will perform better. It is important to keep in mind that
the total error alone is not an indication for the method’s power. For example, a line
that connects all the points will introduce a minimal error, but will have very limited
predictive power for new data. This effect is also known as overfitting.
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K-Nearest neighbors (non-linear)

Nearest Neighbors Regression is a machine
learning algorithm which predicts the value of a — kNN - uniform
continuous variable based on local interpolation
from the values of the nearest neighboring data
points in the training dataset.

The algorithm calculates the distances between
the new observation and all other observations
in the training dataset. It then selects the
k-nearest observations based on the minimum
distance and computes the average value of
their target variables to predict the target B 100 15 10 175 200
variable of the new observation. e Ol S o
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K-Nearest neighbors (non-linear)

Nearest Neighbors results depend on the
number of neighbors (k) as well as the — i
weights that are used to calculate the target
value from the k-nearest neighbors.

Uniform weights account all k-neighbors
equally.
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Nearest neighbors (non-linear)

Nearest Neighbors results depend on the
number of neighbors (k) as well as the — KN - distance
weights that are used to calculate the target
value from the k-nearest neighbors.

Uniform weights account for all k-neighbors
equally.

Distance dependent method introduces a
weight to each point that is inverse to the
distance from target point. Points close to

75 100 125 150 175

the target count more than those that are Number of sections
further away.
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Supervised classification results
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Metrics: accuracy

Accuracy is a metric used to evaluate the performance of a machine learning model
for a classification task. It measures the proportion of correct predictions made by the
model over the total number of predictions. For example, in a binary classification
task, the top row is real data and the bottom is the model’s predictions:
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Metrics: accuracy

In this example, the accuracy is the number of correct predictions over the total
number of predictions: 7 [ 10 or 70%
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Metrics: balanced accuracy

Balanced accuracy is useful when the original labels are not balanced. For example, in
a binary classification task when one class has 7 members and the other 3 members,
like the previous example:
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Metrics: balanced accuracy

Balanced accuracy is measured as the accuracy in class I plus the accuracy in class II
divided by 2: (3/3 + 4/7) | 2 as opposed to (3 + 4) / 10 in simple accuracy. In this case
the balanced accuracy will be ~78% as opposed to the accuracy of 70%.
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Accuracy

Accuracy of a test is particularly important in cases of highly unbalanced datasets. For
example, in a rare disease test:

0.3% of the population has a disease that needs to be treated.
Test A has 30% false positive and 1% false negative

Test B has 1% false positive and 30% false negative

Which test should be preferred?
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Accuracy

For example, in a rare disease (0.3%) test:

Test A has 30% false positive and 10% false negative

Test B has 10% false positive and 30% false negative

+ (0.3) - (99.7)
Test A 30% error 10% error
Test B 10% error 30% error
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Accuracy

For example in 10.000 samples, we would have 30 individuals with the disease and
9970 healthy individuals. Test A will detect 21 of 30 disease individuals while test B
will detect all 30 disease individuals.

However, the simple accuracy of test A would be 1% while test B would be 30%.

+ (0.3%) - (99.7%)

Test A 21 9870

Test B 30 6979
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Accuracy

For example in 10.000 samples, we would have 30 individuals with the disease and
9970 healthy individuals.

However, the simple accuracy of test A would be 99% while test B would be 70%
The balanced accuracy for test A would be 84% and for test B would be 85%

+ (0.3%) - (99.7%)

Test A 21 9870

Test B 30 6979
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Accuracy

When computing accuracy, we need to account for the following factors:

1. Compute on the validation set (not on the training)
2. Take into account the number of samples for each class
3. Compare balanced and simple accuracy

It is not always evident which accuracy measurement is the best to use, and it often
depends on the specific task.
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Log-loss

Log-loss accuracy, also known as cross-entropy loss measures the difference between
the predicted probabilities and the true class labels.

The log-loss function computes the logarithm of the predicted probability for the
correct label, which is a value between 0 and 1. If the predicted probability is close to
1 for the correct label, the log-loss value will be close to 0, indicating high accuracy.

Conversely, if the predicted probability is close to 0, the log-loss value will be high,
indicating low accuracy.
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Log-loss

In binary classification problems, the log-loss function for each sample is defined as
the negative log-likelihood of the classifier given the true label:

Liog(y, p) = —log Pr(y|p) = —(ylog(p) + (1 — y) log(1 — p))

where y is the true label (either O or 1), and p is the predicted probability of the
positive class (usually denoted as class 1).

Log-loss accuracy is calculated as the average log-loss over all the samples in the test
set. A lower log-loss indicates better performance of the model.
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Log-loss

In summary, log-loss accuracy takes into account the confidence of the model's

predictions, while accuracy only measures the percentage of correctly classified samples.

Log-loss accuracy is a more sensitive metric for imbalanced datasets or when the cost of
false positives and false negatives is different.
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Underfitting

Underfitting occurs when a model is too simple to capture the underlying patterns in
the data. It often results in low performance of the model. For example, when a linear
regression model is used to capture a higher order relation between two variables, the
complexity of the model is not sufficient (first panel)

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.46e+08)

— Model — Model - Model
True function True function True function
e Samples e Samples e Samples

Sklearn
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Overfitting

Overfitting occurs when a model fits the training data too well and captures noise and
random fluctuations in the data rather than the underlying patterns. For example,
when a fitting curve represents the noise in the data, rather than the relationship

between two variables (third panel)

Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.46e+08)

— Model — Model - Model
True function True function True function
e Samples e Samples e Samples
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Overfitting

Overfitting can be detected by the following methods:

Plotting both training and validation curves:

The model can be trained on a subset of the data (training set), and tested on the
rest of the data (validation set). Plotting the model's training and validation
accuracy as a function of the number of training epochs can help identify
overfitting. If the training accuracy improves while the validation accuracy starts
to plateau or decline, it may be an indication of overfitting.
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Avoid Overfitting

To avoid overfitting one can use:

Cross-validation: splitting the data into multiple subsets (training and validation sets)
and training the model on training sets, but testing on the validation sets. This can
help detect overfitting by providing an estimate of how well the model will generalize
to new data.

Reduce complexity: Overfitting can occur when the model is too complex for the
sample size. Simplifying the model by reducing the number of features, using a
smaller network architecture, or reducing the depth of the decision tree can help
prevent overfitting.
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Training / Test / Validation sets
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Training - Test sets

In classification, a test set and a
validation set are used to evaluate
the performance of a classification
model.

The training set is the data used to
train the model. Once the model is
trained, it is important to evaluate
how well it generalizes to new,
unseen data.




Training - Test sets

The test set is an independent set of
data that is used to evaluate the
performance of the final selected
model. It provides an unbiased
estimate of how well the model will
perform on new, unseen data.
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Training - Test sets

For classification methods that do
not include hyperparameters, the
training and validation sets are
sufficient for a classification task:

The training set is used to train the
machine learning model

The test set is used to test the
performance of the model in
unseen data. Accuracy is evaluated
on the test set.
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Training - Test sets

However, when the machine
learning model has
hyperparameters that can be
manually selected, i.e. the learning
rate of a learning algorithm, the
number of layers and their

architecture in a neural network etc.

a validation set is also required. The
validation set will be used to tune
the hyperparameters.
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Training - Test sets

Training Validation Training
@
e . a .;f::,‘;‘”h - f .

Model tuning Accuracy




Supervised classification problems

47



Supervised learning

Linear discriminant analysis
Quadratic Discriminant Analysis
Decision trees

Random forest

Support vector machine
Perceptron

Multi-layer perceptron

Neural networks
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Supervised learning: Linear discriminant analysis

Linear Discriminant Analysis (LDA) is a supervised linear dimensionality reduction
method that maximizes the separation between different classes in the data. It is
commonly used in pattern recognition, face recognition, and text classification.

Linear Discriminant Analysis

In LDA, the goal is to find a linear

discriminant function that maximizes the
separation between the classes while
minimizing the variance within each class.

The method involves projecting the original
data onto a lower-dimensional space while
preserving the class separability. Sklearn




Supervised learning: Quadratic discriminant analysis

Quadratic Discriminant Analysis (QDA) is a classification method used to classify
data into classes based on a set of features. QDA is an extension of Linear
Discriminant Analysis (LDA) that allows for non-linear relationships between the

features.

Quadratic Discriminant Analysis

In QDA, each class is modeled by a separate
multivariate normal distribution with its own
mean vector and covariance matrix. The
probability of an observation belonging to a
particular class is then calculated using Bayes'
theorem.

Sklearn
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LDA vs QDA

When the covariance
is fixed in the data

LDA and QDA have
similar results.

For varying
covariance, QDA can
capture non
linearities in the

classification space

Sklearn

Data with

Data with
varying covariances

fixed covariance

Linear Discriminant Analysis vs Quadratic Discriminant Analysis
Linear Discriminant Analysis Quadratic Discriminant Analysis




Supervised learning: Decision trees

Decision Trees are a non-parametric supervised learning method used for
classification. The goal is to create a model that predicts the value of a target
variable by learning simple decision rules inferred from the data features. A tree can
be seen as a piecewise constant approximation. At each level a decision is made and

a binary distribution of data into classes is assigned.
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Supervised learning: Decision trees

The goal is to create a Decision Trees
model that predicts the
value of a target variable
by learning simple
decision rules inferred
from the data features.
For example, a decision

Watermelon Banana

tree on fruits could look
like:

Grapefruit

Vamshi Krishna Gunji, 2019



Supervised learning: Decision trees

Each node in DT COI‘I‘CSPOHdS to a decision Decision surface of decision trees trained on pairs of features
that divides the feature space further,
improving the classification results.

Decision trees are easy to interpret and can
handle both numerical and categorical data. ’ ’ P—— R——
However, decision trees can be prone to sepal length (cm) sepal length (cm) sepal length (cm)
overfitting and may not generalize well to
new data if the tree is too complex. To
address this issue, ensemble methods such as
Random Forest and Gradient Boosted Trees

can be used. 2 - 2 -
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Supervised learning: Random forest

The basic idea of the random forest algorithm is to create multiple decision trees,
each of which learns from a random subset of the training data and a random subset
of the input features.

X dataset

e i e

N, features N, features N, features N, features

Y - Y e
a e o e & o g B
OO0 €0 00 e Oe OO0 OO0 0

TREE #1 TREE #2 TREE #3 TREE #4

| | | |

CLASS C CLASS D CLASS B CLASS C

MAJORITY VOTING

Davis David (@Davis_McDavid)
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Supervised learning: Random forest

The stochastic element that is introduced helps to reduce overfitting and make the
model more robust to noisy data. At test dataset, the random forest combines the
individual predictions of all the individual trees to make a final prediction.

Sklearn

Overfitting in decision trees

can be avoided >



Supervised learning: Support vector machine (SVM)

Support Vector Machine, can be used for both binary and multiclass classification
problems. The key idea behind SVM is to find the optimal hyperplane that separates
the data points of different classes in the feature space with maximum margin. The
data points that are proximal to the hyperplane are called support vectors, and they
are important in determining the position and orientation of the hyperplane. SVM
has different kernel implementations that allow it to handle nonlinear data and
improve its performance in complex classification problems. It can handle
high-dimensional data and it is robust to overfitting. One problem with SVM is it
might be tricky to fine tune the parameters to find the optimal results.
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Supervised learning: Support vector machine (SVM)

SVM is a powerful algorithm that SVC with linear kernel LinearSVC (linear kernel)
can work well with both linearly
separable and non-linearly
separable data. For non-linearly
separable data, SVM uses a
technique called the kernel trick,
which maps the input data to a
higher-dimensional space where the
data can be linearly separable. This
allows SVM to find a non-linear
decision boundary that separates
the data into different classes.
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Supervised learning: Stochastic Gradient Descent

Stochastic gradient descent (SGD) is commonly used in classification tasks to
minimize the loss function of a model, which measures how well the model predicts
the correct class labels. The model parameters are updated after each example in the
training set is presented to the model in contrast to batch gradient descent, where the
parameters are updated after processing the entire training set. The advantage of SGD
is that it is computationally efficient, as the updates can be performed on each
example in parallel. It is also less likely to get stuck in local minima, as it has more
chances to explore the parameter space.
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Supervised learning: Stochastic Gradient Descent

Batch gradient descent Stochastic gradient descent

Local minimum Global minimum

SGD minimizes the loss function, i.e. the error between actual and predicted

labels.
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Supervised learning: Stochastic Gradient Descent

Batch gradient descent Stochastic gradient descent

Local minimum Global minimum

It is less likely to get stuck at a local minimum due to the stochastic element of
the algorithm that allows it to explore a parameter space.
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Supervised learning: Stochastic Gradient Descent

Stochastic Gradient Descent is sensitive to feature scaling, so it is useful to scale
your data. For example standardize all the data to have mean 0 and variance 1.

f — < mean >

f-

< std >

Note that the same scaling must be applied to the test vector to obtain meaningful
results. In addition, the global values of the features need to be normalized, a
common mistake is normalization per class which leads to overfitting.
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Supervised learning: Perceptron

A perceptron is a simple artificial neural network that is used for binary classification
tasks. The perceptron consists of multiple input nodes, which receive the input data,
and an output node, which gives the binary classification result. Each input node is
connected to the output node through a weight. The weights are adjusted during

training, based on the input data and the desired output, to improve the accuracy of
the classification.
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Supervised learning: Perceptron

Multiple input nodes are
connected to the same
output node. In the
modern era of neural
networks this looks like a
naive design, but for the
40s that was a novel and
very powerful design.
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Supervised learning: Perceptron

At each iteration, during the training process, the perceptron is presented with input
data and the corresponding output label. If the perceptron produces the correct
output, the weights are left unchanged. If the output is incorrect, the weights are
adjusted to reduce the error. This process is repeated until the perceptron reaches a

satisfactory level of accuracy.

The perceptron algorithm is simple and efficient, but it can only classify data that can
be separated into two groups by a straight line or a hyperplane. For more complex
problems, to improve performance a multilayer perceptron is often used.
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Supervised learning: Multi-layer perceptron

A multilayer perceptron (MLP) is an artificial neural network that consists of
multiple layers of interconnected neurons. It is a feedforward neural network, i.e. the
information flows in one direction from the input layer to the output layer.
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Supervised learning: Multi-layer perceptron

Typically, the MLP consists of
an input layer, one or more fully
connected layers, and an output
layer. The weights between
neurons of adjacent layers are
modified during the training
process to improve the accuracy
of the network's predictions.
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Supervised learning: Multi-layer perceptron

Example of

alpha 0.10 alpha 0.32
y

classification
results for multiple
example inputs
and for varied
parameters of the
MLP. Optimal
parameters depend
on the input
dataset

Sklearn

alpha 1.00 alpha 3.16

alpha 1.00 alpha 3.16 alpha 10.00

-.
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Supervised learning: Neural networks

Neural networks, refer to a broad range of models inspired by the structure and
function of biological neural networks. They can take many different forms and
architectures, including MLPs, convolutional neural networks (CNNs), recurrent
neural networks (RNNs).

One key difference between MLPs and other types of neural networks is their
architecture. MLPs are fully connected feedforward networks, i.e. each neuron in a
given layer is connected to all neurons in the previous and next layers. CNNs, for
example, have convolutional layers that are specialized for processing spatial data,
such as images. RNNs have recurrent connections that allow them to process
sequential data, such as time series data or text.
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New insights into the classification and nomenclature of cortical
GABAergic interneurons

Defelipe et al. 2013
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Phenotypic variation of transcriptomic cell types in mouse motor

cortex

A feature-based classification and agreed-upon nomenclature of GABAergic
interneurons of the cerebral cortex is much needed but currently lacking

We designed a web-based interactive system that allowed 42 neuroscience
experts to classify a representative sample of 320 cortical neurons and a
selected set of simple morphology features based on reconstructions of their
axonal arbors

The consensus on and usefulness of these features and neuron names were
investigated using agreement analysis, clustering algorithms, Bayesian
networks and supervised classification on the resulting data.
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Phenotypic variation of transcriptomic cell types in mouse motor

cortex

The results quantitatively confirm the impression that different investigators
use their own, mutually inconsistent classification schemes based on
morphological criteria.

However, the analyses also demonstrate that the community may be reaching
consensus for a practical approach to the naming of certain anatomical terms
that are useful for neuronal characterization and classification.

State-of-the-art machine learning approaches were shown to achieve
discrimination capability equivalent to or better than human performance,
opening the possibility of creating an objective computer tool for automatic
classification of neurons, a Neuroclassifier.
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Phenotypic variation of transcriptomic cell types in mouse motor

cortex

Problem: classify neurons automatically

Experts have proposed classifications by
looking at the neuronal shapes in the
microscope

Morphological features can be extracted
from the digital reconstruction of
neurons

A GARDENER CLASSIFICATION Home Log out telp

Neuron 3/320
Mouse, Visual, Layer V (150-300um) 7

. Centered ] . o

. Arcade ] «
Chandetier (7
Horse-tail 2] «

* Martinotti (1] &
Common type ]
Other (11 «

6. Uncharacterized: not enough morpholegical
axonal features (5 0

< Go beck | Cleer form | | Go forward >
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Phenotypic variation of transcriptomic cell types in mouse motor

Example C13881ﬁcatlon SCheme: Chandelier Large basket Horse-tail Martinotti
Based on the shapes of the axons, % W
interneurons have been assigned into Alige o

~8 categories.

i

Common basket
The schematic illustration shows the CaldicHorshue %
typical shapes of these categories > X ¢
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Phenotypic variation of transcriptomic cell types in mouse motor
CO rt OX Agreemleflt analysis.

Agreement between experts

Relative frequency of each category for
each feature (F1 to F6): that is, the number
of times a category was selected divided by
the total number of ratings for the relevant
feature. (b) Overall observed agreement
(circles) and chance-corrected (crosses) for
each feature, indicating the degree of
concordance between the experts.




Phenotypic variation of transcriptomic cell types in mouse motor
cortex

For some cell types, experts agreement is very high (for example 41/45)

Experts
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Phenotypic variation of transcriptomic cell types in mouse motor
cortex

However, for other cell types, expert agreement is very low (~30%)
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Phenotypic variation of transcriptomic cell types in mouse motor
cortex

Bayesian networks describe experts’ decision on a neuron type. Each expert used a
different decision-tree like process to assess neuronal types.

a Expert 16 Feature 4 Feature 6

Ascending % Characterized  99%
Both % Uncharacterized 1%
Feature 5 Decending
Arcade % Missing
Chandelier

Common basket

Common type

Horse-tail
Large basket
Martinotti
Missing

Neurogliaform
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Phenotypic variation of transcriptomic cell types in mouse motor

cortex

This study empirically and quantitatively demonstrates that the gardener’s
approach to neuron classification is untenable at this time and confirms the
impression that different investigators use their own, mutually inconsistent
schemes for classifying neurons based on morphological criteria. Many
ambiguities are independent of the relative reconstruction quality and
completeness of the tested neurons.

A striking indication of the problem is that in several cases, experts assigned a
different name to a neuron than the term they had chosen in their own original
publication from which that same neuron was taken.

79



Phenotypic variation of transcriptomic cell types in mouse motor

cortex

In such a use-case it is important to keep in mind that any supervised
classification scheme is highly biased on the expert labels that were presented
to it. Therefore, an algorithm that yields very high accuracy (~100%) is
probably an indication of overfitting, picking up noise, rather than real features.
A way to miss overfitting in this instance is the use of high number of input
features. For example if we separate 200 cells into 5 classes, but we use 500
features, it will always be possible for a classifier to find combinations of

relevant features that increase the accuracy:.
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Sophie Laturnus et al. 2020
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Quantitative analysis of neuronal morphologies usually begins with choosing a particular
feature representation in order to make individual morphologies amenable to standard
statistics tools and machine learning algorithms. Many different feature representations
have been suggested in the literature, ranging from density maps to intersection profiles,
but they have never been compared side by side. Here we performed a systematic
comparison of various representations, measuring how well they were able to capture the
difference between known morphological cell types. We found that the best performing
feature representations were two-dimensional density maps, two-dimensional persistence
images and morphometric statistics, which continued to perform well even when neurons
were only partially traced. Combining these feature representations together led to further
performance increases suggesting that they captured non-redundant information.
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Exemplary cells of each cell type for all four =
data sets. Axons are shown in light green,
dendrites in dark green.

(a) Mouse retinal bipolar cells

(b) L2/3 inhibitory interneurons in primary
visual cortex of adult mice (Jiang et al. 2015)

(c) L4 inhibitory interneurons in primary
visual cortex of adult mice (Scala et al. 2019)

(d) L5 inhibitory interneurons in primary
visual cortex of adult mice (Jiang et al. 2015)
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Examples of features used in the
classification process. Features
include:

Density maps,

Morphometrics,

Distributions of morphometrics,
Topological descriptors
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Pairwise Classification

Logistic Regression + Elastic Net Regularization Class

Per class pair e
per statistic PCA | R A
scaling ——9> PX{ ! —
Density maps =@ [l :
(6 variants) c ] | m| o o B
sla S UL ~ | N
(W

Morphometric &
Statistics
(25 variants)

Morphometric i s repeated 5-fold stratified cross-validation
Distribution : or & 3 = 3
(23 variants) 0 2 Multi-class Classification

Persistence \ de e Class
Srvarian te) PCA Multinomial 1
Per statistic — scaling ——p» = aue R’Egressmn ——-E 2
Elastic Net Regularization M
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Cross-validated log-loss for each pair of morphological types in each data set using

XZ density maps on full neurons as predictors in logistic regression. Zero log-loss

corresponds to perfect prediction, In(2) = 0.69 corresponds to random guessing.
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Multi-class classification
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Ranked top five feature
representations for
each classification
scheme using different
performance measures
on full-neuron data. All
measures and all
classification schemes
selected the same top-5
features
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Cross-validated log-loss of XZ density maps, morphometric statistics and
z-projection-based 2D persistence as a function of truncation level. Branches

were truncated to mimic what happens when neurons are only partially traced o
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We found that density maps, z-projection-based 2D persistence images and
morphometric statistics yield the best predictions of cell type labels, and
showed that they do so even if substantial parts of the traced morphologies are
removed.

This study applied the same standardized classification procedure to each
morphological representation, using well-curated data sets with well-defined
cell types. This comparison revealed that density maps contain enough
information to accurately discriminate most inhibitory cell types. This implies
that the spatial extent and overall shape of the axonal arbour, as a consequence

of a neuron’s connectivity, are more relevant than precise branching
characteristics
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