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Supervised learning
Supervised learning is a type of machine learning where the algorithm is trained on 
labeled data. Supervised learning is suitable for solving problems where the goal is to 
predict the output value based on the input data. 

● There is a clear relationship between the input data and the output labels. 
● Sufficient labeled data is available to train the algorithm. 
● The problem can be defined as a classification or regression task. 
● The goal is to make accurate predictions on new, unseen data. 

Some examples of applications that use supervised learning include spam filtering, 
image recognition, speech recognition, and predicting housing prices
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Unsupervised learning
Unsupervised clustering is used to group similar data points into clusters without any 
predefined labels or categories. Unsupervised clustering is suitable for solving 
problems where the goal is to discover patterns and relationships in the data.  

● There is no clear relationship between the input data and the output labels.  
● There is a large amount of unlabeled data available.  
● The goal is to discover patterns and relationships in the data.  
● The data can be grouped into natural clusters based on similarity.  

Some examples of applications that use unsupervised clustering include image 
segmentation, clustering, dimensionality reduction. 
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Regression problems
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Regression
Regression is used to determine the correlation between one dependent variable Y 
and a set of other variables X1, X2, … which are considered independent variables. The 
goal of regression analysis is to understand how changes in the independent variables 
are associated with changes in the dependent variable, and to use this information to 
make predictions about the value of the dependent variable.

Regression investigates the correlation between variables observed in a data set, and 
quantifies whether those correlations are statistically significant or not.

Examples of problems that can be addressed with regression include prediction of 
product price, forecasting demand for a product and prediction of disease risk.
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Regression
Regression can be linear, or non-linear and it can be distinguished in simple and 
multi based on the number of the independent variables. 

Simple linear regression: Y = a + b * X  + u

Multiple linear regression: Y = a + b1* X1  +  b2* X2 + b3 * X3  + … +   u

Y: dependent

X: independent

u: error
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Linear Regression
First we need to test if variables are 
correlated (remember the correlation 
statistical tests). Once we identify a valid 
correlation, we can use linear regression to 
identify what’s the type of dependency that 
can describe our dataset.
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Least squares (linear regression)
Least square method aims to minimize the 
sum of squared error between the predicted 
values and the actual values.
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Lasso
Lasso (least absolute shrinkage and selection 
operator) is a linear regression method that 
performs both variable selection and 
regularization in order to enhance the 
prediction accuracy and interpretability of 
the model. LASSO regression adds a penalty 
term to the objective function of linear 
regression, which is a multiple of the sum of 
the absolute values of the coefficients. 
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Lasso
The objective function of LASSO regression 
can be expressed as:
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Ridge
Ridge regression adds a penalty term to the 
objective function of linear regression, 
which is a multiple of the sum of the 
squares of the coefficients.
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Elastic-net
Elastic net adds a penalty term to the 
objective function of linear regression, 
which is a weighted sum of the L1 (absolute 
value) and L2 (squared value) norms of the 
coefficients. 
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Linear Regression
Any observations for linear regression methods?
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Linear Regression
Any observations for linear regression methods?

The specific methodology and the additional error term does not seem to have a 
significant effect on the results (for this particular problem). 

However the results depend on the characteristics of the problem, so it’s not always 
trivial to judge which method will perform better. It is important to keep in mind that 
the total error alone is not an indication for the method’s power. For example, a line 
that connects all the points will introduce a minimal error, but will have very limited 
predictive power for new data. This effect is also known as overfitting. 
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K-Nearest neighbors (non-linear)
Nearest Neighbors Regression is a machine 
learning algorithm which predicts the value of a 
continuous variable based on local interpolation 
from the values of the nearest neighboring data 
points in the training dataset.

The algorithm calculates the distances between 
the new observation and all other observations 
in the training dataset. It then selects the 
k-nearest observations based on the minimum 
distance and computes the average value of 
their target variables to predict the target 
variable of the new observation.
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K-Nearest neighbors (non-linear)
Nearest Neighbors results depend on the 
number of neighbors (k) as well as the 
weights that are used to calculate the target 
value from the k-nearest neighbors. 

Uniform weights account all k-neighbors 
equally. 
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Nearest neighbors (non-linear)
Nearest Neighbors results depend on the 
number of neighbors (k) as well as the 
weights that are used to calculate the target 
value from the k-nearest neighbors. 

Uniform weights account for all k-neighbors 
equally. 

Distance dependent method introduces a 
weight to each point that is inverse to the 
distance from target point. Points close to 
the target count more than those that are 
further away.
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Supervised classification results
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Metrics: accuracy
Accuracy is a metric used to evaluate the performance of a machine learning model 
for a classification task. It measures the proportion of correct predictions made by the 
model over the total number of predictions. For example, in a binary classification 
task, the top row is real data and the bottom is the model’s predictions:
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Metrics: accuracy
In this example, the accuracy is the number of correct predictions over the total 
number of predictions: 7 / 10 or 70%
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Metrics: balanced accuracy
Balanced accuracy is useful when the original labels are not balanced. For example, in 
a binary classification task when one class has 7 members and the other 3 members, 
like the previous example:
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Metrics: balanced accuracy
Balanced accuracy is measured as the accuracy in class I plus the accuracy in class II 
divided by 2: (3/3 + 4/7) / 2 as opposed to (3 + 4) / 10 in simple accuracy. In this case 
the balanced accuracy will be ~78% as opposed to the accuracy of 70%. 
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Accuracy
Accuracy of a test is particularly important in cases of highly unbalanced datasets. For 
example, in a rare disease test:

0.3% of the population has a disease that needs to be treated. 

Test A has 30% false positive and 1% false negative

Test B has 1% false positive and 30% false negative

Which test should be preferred? 
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Accuracy
For example, in a rare disease (0.3%) test:

Test A has 30% false positive and 10% false negative

Test B has 10% false positive and 30% false negative
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+  (0.3)  - (99.7)

Test A 30% error 10% error

Test B 10% error 30% error



Accuracy
For example in 10.000 samples, we would have 30 individuals with the disease and 
9970 healthy individuals. Test A will detect 21 of 30 disease individuals while test B 
will detect all 30 disease individuals. 

However, the simple accuracy of test A would be 1% while test B would be 30%. 
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Test A 21 9870

Test B 30 6979



Accuracy
For example in 10.000 samples, we would have 30 individuals with the disease and 
9970 healthy individuals. 

However, the simple accuracy of test A would be 99% while test B would be 70%

The balanced accuracy for test A would be 84% and for test B would be 85%
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Accuracy
When computing accuracy, we need to account for the following factors:

1. Compute on the validation set (not on the training)
2. Take into account the number of samples for each class
3. Compare balanced and simple accuracy

It is not always evident which accuracy measurement is the best to use, and it often 
depends on the specific task.
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Log-loss 
Log-loss accuracy, also known as cross-entropy loss measures the difference between 
the predicted probabilities and the true class labels.

The log-loss function computes the logarithm of the predicted probability for the 
correct label, which is a value between 0 and 1. If the predicted probability is close to 
1 for the correct label, the log-loss value will be close to 0, indicating high accuracy. 
Conversely, if the predicted probability is close to 0, the log-loss value will be high, 
indicating low accuracy.
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Log-loss 
In binary classification problems, the log-loss function for each sample is defined as 
the negative log-likelihood of the classifier given the true label:

where y is the true label (either 0 or 1), and p is the predicted probability of the 
positive class (usually denoted as class 1).

Log-loss accuracy is calculated as the average log-loss over all the samples in the test 
set. A lower log-loss indicates better performance of the model.
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Log-loss 
In summary, log-loss accuracy takes into account the confidence of the model's 
predictions, while accuracy only measures the percentage of correctly classified samples. 
Log-loss accuracy is a more sensitive metric for imbalanced datasets or when the cost of 
false positives and false negatives is different.
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Underfitting
Underfitting occurs when a model is too simple to capture the underlying patterns in 
the data. It often results in low performance of the model. For example, when a linear 
regression model is used to capture a higher order relation between two variables, the 
complexity of the model is not sufficient (first panel)
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Overfitting
Overfitting occurs when a model fits the training data too well and captures noise and 
random fluctuations in the data rather than the underlying patterns. For example, 
when a fitting curve represents the noise in the data, rather than the relationship 
between two variables (third panel) 
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Overfitting
Overfitting can be detected by the following methods:

- Plotting both training and validation curves: 

The model can be trained on a subset of the data (training set), and tested on the 
rest of the data (validation set). Plotting the model's training and validation 
accuracy as a function of the number of training epochs can help identify 
overfitting. If the training accuracy improves while the validation accuracy starts 
to plateau or decline, it may be an indication of overfitting. 
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Avoid Overfitting
To avoid overfitting one can use: 

Cross-validation: splitting the data into multiple subsets (training and validation sets) 
and training the model on training sets, but testing on the validation sets. This can 
help detect overfitting by providing an estimate of how well the model will generalize 
to new data. 

Reduce complexity: Overfitting can occur when the model is too complex for the 
sample size. Simplifying the model by reducing the number of features, using a 
smaller network architecture, or reducing the depth of the decision tree can help 
prevent overfitting.
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Training / Test / Validation sets
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Training - Test sets
In classification, a test set and a 
validation set are used to evaluate 
the performance of a classification 
model.

The training set is the data used to 
train the model. Once the model is 
trained, it is important to evaluate 
how well it generalizes to new, 
unseen data. 
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Training - Test sets
The test set is an independent set of 
data that is used to evaluate the 
performance of the final selected 
model. It provides an unbiased 
estimate of how well the model will 
perform on new, unseen data. 
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Training - Test sets
For classification methods that do 
not include hyperparameters, the 
training and validation sets are 
sufficient for a classification task:

The training set is used to train the 
machine learning model

The test set is used to test the 
performance of the model in 
unseen data. Accuracy is evaluated 
on the test set. 
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Training - Test sets
However, when the machine 
learning model has 
hyperparameters that can be 
manually selected, i.e. the learning 
rate of a learning algorithm, the 
number of layers and their 
architecture in a neural network etc. 
a validation set is also required. The 
validation set will be used to tune 
the hyperparameters. 

45



Training - Test sets
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Supervised classification problems
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Supervised learning
● Linear discriminant analysis
● Quadratic Discriminant Analysis 
● Decision trees
● Random forest
● Support vector machine
● Perceptron
● Multi-layer perceptron
● Neural networks
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Supervised learning: Linear discriminant analysis
Linear Discriminant Analysis (LDA) is a supervised linear dimensionality reduction 
method that maximizes the separation between different classes in the data. It is 
commonly used in pattern recognition, face recognition, and text classification.

49

In LDA, the goal is to find a linear 
discriminant function that maximizes the 
separation between the classes while 
minimizing the variance within each class. 
The method involves projecting the original 
data onto a lower-dimensional space while 
preserving the class separability. Sklearn



Supervised learning: Quadratic discriminant analysis
Quadratic Discriminant Analysis (QDA) is a classification method used to classify 
data into classes based on a set of features. QDA is an extension of Linear 
Discriminant Analysis (LDA) that allows for non-linear relationships between the 
features.
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In QDA, each class is modeled by a separate 
multivariate normal distribution with its own 
mean vector and covariance matrix. The 
probability of an observation belonging to a 
particular class is then calculated using Bayes' 
theorem.
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LDA vs QDA
When the covariance 
is fixed in the data 
LDA and QDA have 
similar results.

For varying 
covariance, QDA can 
capture non 
linearities in the 
classification space

51
Sklearn



Supervised learning: Decision trees 
Decision Trees are a non-parametric supervised learning method used for 
classification. The goal is to create a model that predicts the value of a target 
variable by learning simple decision rules inferred from the data features. A tree can 
be seen as a piecewise constant approximation. At each level a decision is made and 
a binary distribution of data into classes is assigned. 
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Supervised learning: Decision trees 
The goal is to create a 
model that predicts the 
value of a target variable 
by learning simple 
decision rules inferred 
from the data features. 
For example, a decision 
tree on fruits could look 
like: 
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Supervised learning: Decision trees 
Each node in DT corresponds to a decision 
that divides the feature space further, 
improving the classification results. 

Decision trees are easy to interpret and can 
handle both numerical and categorical data. 
However, decision trees can be prone to 
overfitting and may not generalize well to 
new data if the tree is too complex. To 
address this issue, ensemble methods such as 
Random Forest and Gradient Boosted Trees 
can be used.
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Supervised learning: Random forest 
The basic idea of the random forest algorithm is to create multiple decision trees, 
each of which learns from a random subset of the training data and a random subset 
of the input features. 
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Supervised learning: Random forest 
The stochastic element that is introduced helps to reduce overfitting and make the 
model more robust to noisy data. At test dataset, the random forest combines the 
individual predictions of all the individual trees to make a final prediction.
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Overfitting in decision trees 
can be avoided 
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Supervised learning: Support vector machine (SVM)
Support Vector Machine, can be used for both binary and multiclass classification 
problems. The key idea behind SVM is to find the optimal hyperplane that separates 
the data points of different classes in the feature space with maximum margin. The 
data points that are proximal to the hyperplane are called support vectors, and they 
are important in determining the position and orientation of the hyperplane. SVM 
has different kernel implementations that allow it to handle nonlinear data and 
improve its performance in complex classification problems. It can handle 
high-dimensional data and it is robust to overfitting. One problem with SVM is it 
might be tricky to fine tune the parameters to find the optimal results. 
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Supervised learning: Support vector machine (SVM)
SVM is a powerful algorithm that 
can work well with both linearly 
separable and non-linearly 
separable data. For non-linearly 
separable data, SVM uses a 
technique called the kernel trick, 
which maps the input data to a 
higher-dimensional space where the 
data can be linearly separable. This 
allows SVM to find a non-linear 
decision boundary that separates 
the data into different classes.
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Supervised learning: Stochastic Gradient Descent
Stochastic gradient descent (SGD) is commonly used in classification tasks to 
minimize the loss function of a model, which measures how well the model predicts 
the correct class labels. The model parameters are updated after each example in the 
training set is presented to the model in contrast to batch gradient descent, where the 
parameters are updated after processing the entire training set. The advantage of SGD 
is that it is computationally efficient, as the updates can be performed on each 
example in parallel. It is also less likely to get stuck in local minima, as it has more 
chances to explore the parameter space.

59



Supervised learning: Stochastic Gradient Descent

SGD minimizes the loss function, i.e. the error between actual and predicted 
labels. 
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Supervised learning: Stochastic Gradient Descent

It is less likely to get stuck at a local minimum due to the stochastic element of 
the algorithm that allows it to explore a parameter space. 
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Supervised learning: Stochastic Gradient Descent

Stochastic Gradient Descent is sensitive to feature scaling, so it is useful to scale 
your data. For example standardize all the data to have mean 0 and variance 1. 

Note that the same scaling must be applied to the test vector to obtain meaningful 
results. In addition, the global values of the features need to be normalized, a 
common mistake is normalization per class which leads to overfitting. 
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Supervised learning: Perceptron
A perceptron is a simple artificial neural network that is used for binary classification 
tasks. The perceptron consists of multiple input nodes, which receive the input data, 
and an output node, which gives the binary classification result. Each input node is 
connected to the output node through a weight. The weights are adjusted during 
training, based on the input data and the desired output, to improve the accuracy of 
the classification.
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Supervised learning: Perceptron
Multiple input nodes are 
connected to the same 
output node. In the 
modern era of neural 
networks this looks like a 
naive design, but for the 
40s that was a novel and 
very powerful design.
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Supervised learning: Perceptron
At each iteration, during the training process, the perceptron is presented with input 
data and the corresponding output label. If the perceptron produces the correct 
output, the weights are left unchanged. If the output is incorrect, the weights are 
adjusted to reduce the error. This process is repeated until the perceptron reaches a 
satisfactory level of accuracy.

The perceptron algorithm is simple and efficient, but it can only classify data that can 
be separated into two groups by a straight line or a hyperplane. For more complex 
problems, to improve performance a multilayer perceptron is often used. 
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Supervised learning: Multi-layer perceptron
A multilayer perceptron (MLP) is an artificial neural network that consists of 
multiple layers of interconnected neurons. It is a feedforward neural network, i.e. the 
information flows in one direction from the input layer to the output layer.
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Supervised learning: Multi-layer perceptron
Typically, the MLP consists of 
an input layer, one or more fully 
connected layers, and an output 
layer. The weights between 
neurons of adjacent layers are 
modified during the training 
process to improve the accuracy 
of the network's predictions.
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Supervised learning: Multi-layer perceptron
Example of 
classification 
results for multiple 
example inputs 
and for varied 
parameters of the 
MLP. Optimal 
parameters depend 
on the input 
dataset
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Supervised learning: Neural networks 
Neural networks, refer to a broad range of models inspired by the structure and 
function of biological neural networks. They can take many different forms and 
architectures, including MLPs, convolutional neural networks (CNNs), recurrent 
neural networks (RNNs).

One key difference between MLPs and other types of neural networks is their 
architecture. MLPs are fully connected feedforward networks, i.e. each neuron in a 
given layer is connected to all neurons in the previous and next layers. CNNs, for 
example, have convolutional layers that are specialized for processing spatial data, 
such as images. RNNs have recurrent connections that allow them to process 
sequential data, such as time series data or text.
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New insights into the classification and nomenclature of cortical 
GABAergic interneurons

DeFelipe et al. 2013
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

● A feature-based classification and agreed-upon nomenclature of GABAergic 
interneurons of the cerebral cortex is much needed but currently lacking

● We designed a web-based interactive system that allowed 42 neuroscience 
experts to classify a representative sample of 320 cortical neurons and a 
selected set of simple morphology features based on reconstructions of their 
axonal arbors

● The consensus on and usefulness of these features and neuron names were 
investigated using agreement analysis, clustering algorithms, Bayesian 
networks and supervised classification on the resulting data.  
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

● The results quantitatively confirm the impression that different investigators 
use their own, mutually inconsistent classification schemes based on 
morphological criteria. 

● However, the analyses also demonstrate that the community may be reaching 
consensus for a practical approach to the naming of certain anatomical terms 
that are useful for neuronal characterization and classification. 

● State-of-the-art machine learning approaches were shown to achieve 
discrimination capability equivalent to or better than human performance, 
opening the possibility of creating an objective computer tool for automatic 
classification of neurons, a Neuroclassifier.
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

Problem: classify neurons automatically

Experts have proposed classifications by 
looking at the neuronal shapes in the 
microscope

Morphological features can be extracted 
from the digital reconstruction of 
neurons
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

Example classification scheme:

Based on the shapes of the axons, 
interneurons have been assigned into 
~8 categories. 

The schematic illustration shows the 
typical shapes of these categories

74



Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

Agreement between experts 

Relative frequency of each category for 
each feature (F1 to F6): that is, the number 
of times a category was selected divided by 
the total number of ratings for the relevant 
feature. (b) Overall observed agreement 
(circles) and chance-corrected (crosses) for 
each feature, indicating the degree of 
concordance between the experts.
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

For some cell types, experts agreement is very high (for example 41/45)
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

However, for other cell types, expert agreement is very low (~30%)
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

Bayesian networks describe experts’ decision on a neuron type. Each expert used a 
different decision-tree like process to assess neuronal types. 
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

● This study empirically and quantitatively demonstrates that the gardener’s 
approach to neuron classification is untenable at this time and confirms the 
impression that different investigators use their own, mutually inconsistent 
schemes for classifying neurons based on morphological criteria. Many 
ambiguities are independent of the relative reconstruction quality and 
completeness of the tested neurons. 

● A striking indication of the problem is that in several cases, experts assigned a 
different name to a neuron than the term they had chosen in their own original 
publication from which that same neuron was taken.
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Phenotypic variation of transcriptomic cell types in mouse motor 
cortex

● In such a use-case it is important to keep in mind that any supervised 
classification scheme is highly biased on the expert labels that were presented 
to it. Therefore, an algorithm that yields very high accuracy (~100%) is 
probably an indication of overfitting, picking up noise, rather than real features. 

● A way to miss overfitting in this instance is the use of high number of input 
features. For example if we separate 200 cells into 5 classes, but we use 500 
features, it will always be possible for a classifier to find combinations of 
relevant features that increase the accuracy. 
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Sophie Laturnus et al. 2020
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Quantitative analysis of neuronal morphologies usually begins with choosing a particular 
feature representation in order to make individual morphologies amenable to standard 
statistics tools and machine learning algorithms. Many different feature representations 
have been suggested in the literature, ranging from density maps to intersection profiles, 
but they have never been compared side by side. Here we performed a systematic 
comparison of various representations, measuring how well they were able to capture the 
difference between known morphological cell types. We found that the best performing 
feature representations were two-dimensional density maps, two-dimensional persistence 
images and morphometric statistics, which continued to perform well even when neurons 
were only partially traced. Combining these feature representations together led to further 
performance increases suggesting that they captured non-redundant information. 
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Exemplary cells of each cell type for all four 
data sets. Axons are shown in light green, 
dendrites in dark green. 
(a) Mouse retinal bipolar cells 
(b) L2/3 inhibitory interneurons in primary 
visual cortex of adult mice (Jiang et al. 2015)
(c) L4 inhibitory interneurons in primary 
visual cortex of adult mice (Scala et al. 2019)
(d) L5 inhibitory interneurons in primary 
visual cortex of adult mice (Jiang et al. 2015)
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Examples of features used in the 
classification process. Features 
include:
Density maps, 
Morphometrics,
Distributions of morphometrics,
Topological descriptors
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Methods: (1) feature extraction (2) Normalizations (3) Principal component 
analysis (dimensionality reduction) (4) Logistic regression / Elastic Net 
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Cross-validated log-loss for each pair of morphological types in each data set using 
XZ density maps on full neurons as predictors in logistic regression. Zero log-loss 
corresponds to perfect prediction, ln(2) ≈ 0.69 corresponds to random guessing. 86



A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Pairwise classification 
performance of the 
top performing 
feature 
representations based 
on the full-neuron (a)  
features for each data 
set. Error bars 
correspond to 95% 
confidence intervals. 
Chance-level log-loss 
equals ln(2) ≈ 0.69.
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Pairwise classification 
performance of the top 
performing feature 
representations based on the 
axonal (b), and dendritic (c) 
features for each data set. 
Feature representations are 
grouped into density maps, 
morphometric statistics, 
morphometric distributions, 
persistence images, and 
combinations of the top three 
feature representations. 

88



A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Multi-class 
classification 
performance of the top 
performing feature 
representations based 
on the full neuron 
features for each data 
set. 
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Ranked top five feature 
representations for 
each classification 
scheme using different 
performance measures 
on full-neuron data. All 
measures and all 
classification schemes 
selected the same top-5 
features
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

Cross-validated log-loss of XZ density maps, morphometric statistics and 
z-projection-based 2D persistence as a function of truncation level. Branches 
were truncated to mimic what happens when neurons are only partially traced
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A Systematic Evaluation of Interneuron Morphology
Representations for Cell Type Discrimination

● We found that density maps, z-projection-based 2D persistence images and 
morphometric statistics yield the best predictions of cell type labels, and 
showed that they do so even if substantial parts of the traced morphologies are 
removed.

● This study applied the same standardized classification procedure to each 
morphological representation, using well-curated data sets with well-defined 
cell types. This comparison revealed that density maps contain enough 
information to accurately discriminate most inhibitory cell types. This implies 
that the spatial extent and overall shape of the axonal arbour, as a consequence 
of a neuron’s connectivity, are more relevant than precise branching 
characteristics
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Questions?
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